Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Intrinsic Fairness-Accuracy Tradeoffs under Equalized Odds (2405.07393v1)

Published 12 May 2024 in cs.LG, cs.AI, cs.IT, and math.IT

Abstract: With the growing adoption of ML systems in areas like law enforcement, criminal justice, finance, hiring, and admissions, it is increasingly critical to guarantee the fairness of decisions assisted by ML. In this paper, we study the tradeoff between fairness and accuracy under the statistical notion of equalized odds. We present a new upper bound on the accuracy (that holds for any classifier), as a function of the fairness budget. In addition, our bounds also exhibit dependence on the underlying statistics of the data, labels and the sensitive group attributes. We validate our theoretical upper bounds through empirical analysis on three real-world datasets: COMPAS, Adult, and Law School. Specifically, we compare our upper bound to the tradeoffs that are achieved by various existing fair classifiers in the literature. Our results show that achieving high accuracy subject to a low-bias could be fundamentally limited based on the statistical disparity across the groups.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.