Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

MM-InstructEval: Zero-Shot Evaluation of (Multimodal) Large Language Models on Multimodal Reasoning Tasks (2405.07229v2)

Published 12 May 2024 in cs.MM

Abstract: The emergence of multimodal LLMs (MLLMs) has triggered extensive research in model evaluation. While existing evaluation studies primarily focus on unimodal (vision-only) comprehension and reasoning capabilities, they overlook critical assessments of complex multimodal reasoning tasks that require integrated understanding of both visual and textual contexts. Such multimodal tasks present unique challenges, demanding sophisticated reasoning across multiple modalities and deep comprehension of multimodal contexts. In this paper, we present MM-InstructEval, a comprehensive evaluation framework that incorporates diverse metrics to assess model performance across various multimodal reasoning tasks with vision-text contexts. We conduct extensive zero-shot evaluations on 45 models (including 36 MLLMs) across 16 multimodal datasets, encompassing 6 distinct tasks using 10 different instructions. Our framework introduces multiple innovative metrics, including the 'Best Performance' metric to benchmark peak model capabilities, the 'Mean Relative Gain' metric to assess overall efficacy across models and instructions, the 'Stability' metric to measure robustness, and the 'Adaptability' metric to quantify the compatibility between models and instructions. Through comprehensive evaluation and analysis, we uncover several significant insights about model architectures, instruction formats, and their interactions in multimodal reasoning tasks. Our findings establish new benchmarks for assessing the reasoning capabilities of MLLMs and provide strategic guidance for future developments. To facilitate continued research and evaluation in this field, we release our framework and resources at https://github.com/declare-lab/MM-InstructEval, with an interactive leaderboard available at MM-InstructEval Leaderboard (https://declare-lab.github.io/MM-InstructEval/).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube