Papers
Topics
Authors
Recent
2000 character limit reached

Randomized algorithms for computing the tensor train approximation and their applications (2405.07147v2)

Published 12 May 2024 in math.NA and cs.NA

Abstract: In this paper, we focus on the fixed TT-rank and precision problems of finding an approximation of the tensor train (TT) decomposition of a tensor. Note that the TT-SVD and TT-cross are two well-known algorithms for these two problems. Firstly, by combining the random projection technique with the power scheme, we obtain two types of randomized algorithms for the fixed TT-rank problem. Secondly, by using the non-asymptotic theory of sub-random Gaussian matrices, we derive the upper bounds of the proposed randomized algorithms. Thirdly, we deduce a new deterministic strategy to estimate the desired TT-rank with a given tolerance and another adaptive randomized algorithm that finds a low TT-rank representation satisfying a given tolerance, and is beneficial when the target TT-rank is not known in advance. We finally illustrate the accuracy of the proposed algorithms via some test tensors from synthetic and real databases. In particular, for the fixed TT-rank problem, the proposed algorithms can be several times faster than the TT-SVD, and the accuracy of the proposed algorithms and the TT-SVD are comparable for several test tensors.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.