Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 73 tok/s
Gemini 3.0 Pro 52 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Post Training Quantization of Large Language Models with Microscaling Formats (2405.07135v3)

Published 12 May 2024 in cs.LG and cs.AI

Abstract: LLMs have distinguished themselves with outstanding performance in complex language modeling tasks, yet they come with significant computational and storage challenges. This paper explores the potential of quantization to mitigate these challenges. We systematically study the combined application of three well-known post-training techniques, SmoothQuant, AWQ, and GPTQ, and provide a comprehensive analysis of their interactions and implications for advancing LLM quantization. We enhance the versatility of these methods by enabling quantization to microscaling (MX) formats, extending the applicability of these PTQ algorithms beyond their original fixed-point format targets. We show that combining different PTQ methods enables us to quantize models to 4-bit weights and 8-bit activations using the MXINT format with negligible accuracy loss compared to the uncompressed baseline.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: