Papers
Topics
Authors
Recent
2000 character limit reached

MUD: Towards a Large-Scale and Noise-Filtered UI Dataset for Modern Style UI Modeling (2405.07090v1)

Published 11 May 2024 in cs.HC

Abstract: The importance of computational modeling of mobile user interfaces (UIs) is undeniable. However, these require a high-quality UI dataset. Existing datasets are often outdated, collected years ago, and are frequently noisy with mismatches in their visual representation. This presents challenges in modeling UI understanding in the wild. This paper introduces a novel approach to automatically mine UI data from Android apps, leveraging LLMs to mimic human-like exploration. To ensure dataset quality, we employ the best practices in UI noise filtering and incorporate human annotation as a final validation step. Our results demonstrate the effectiveness of LLMs-enhanced app exploration in mining more meaningful UIs, resulting in a large dataset MUD of 18k human-annotated UIs from 3.3k apps. We highlight the usefulness of MUD in two common UI modeling tasks: element detection and UI retrieval, showcasing its potential to establish a foundation for future research into high-quality, modern UIs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.