RETTA: Retrieval-Enhanced Test-Time Adaptation for Zero-Shot Video Captioning (2405.07046v2)
Abstract: Despite the significant progress of fully-supervised video captioning, zero-shot methods remain much less explored. In this paper, we propose a novel zero-shot video captioning framework named Retrieval-Enhanced Test-Time Adaptation (RETTA), which takes advantage of existing pretrained large-scale vision and LLMs to directly generate captions with test-time adaptation. Specifically, we bridge video and text using four key models: a general video-text retrieval model XCLIP, a general image-text matching model CLIP, a text alignment model AnglE, and a text generation model GPT-2, due to their source-code availability. The main challenge is how to enable the text generation model to be sufficiently aware of the content in a given video so as to generate corresponding captions. To address this problem, we propose using learnable tokens as a communication medium among these four frozen models GPT-2, XCLIP, CLIP, and AnglE. Different from the conventional way that trains these tokens with training data, we propose to learn these tokens with soft targets of the inference data under several carefully crafted loss functions, which enable the tokens to absorb video information catered for GPT-2. This procedure can be efficiently done in just a few iterations (we use 16 iterations in the experiments) and does not require ground truth data. Extensive experimental results on three widely used datasets, MSR-VTT, MSVD, and VATEX, show absolute 5.1%-32.4% improvements in terms of the main metric CIDEr compared to several state-of-the-art zero-shot video captioning methods.