Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

IPDnet: A Universal Direct-Path IPD Estimation Network for Sound Source Localization (2405.07021v1)

Published 11 May 2024 in eess.AS and cs.SD

Abstract: Extracting direct-path spatial feature is crucial for sound source localization in adverse acoustic environments. This paper proposes the IPDnet, a neural network that estimates direct-path inter-channel phase difference (DP-IPD) of sound sources from microphone array signals. The estimated DP-IPD can be easily translated to source location based on the known microphone array geometry. First, a full-band and narrow-band fusion network is proposed for DP-IPD estimation, in which alternating narrow-band and full-band layers are responsible for estimating the rough DP-IPD information in one frequency band and capturing the frequency correlations of DP-IPD, respectively. Second, a new multi-track DP-IPD learning target is proposed for the localization of flexible number of sound sources. Third, the IPDnet is extend to handling variable microphone arrays, once trained which is able to process arbitrary microphone arrays with different number of channels and array topology. Experiments of multiple-moving-speaker localization are conducted on both simulated and real-world data, which show that the proposed full-band and narrow-band fusion network and the proposed multi-track DP-IPD learning target together achieves excellent sound source localization performance. Moreover, the proposed variable-array model generalizes well to unseen microphone arrays.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: