Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

GRASP-GCN: Graph-Shape Prioritization for Neural Architecture Search under Distribution Shifts (2405.06994v1)

Published 11 May 2024 in cs.CV and cs.LG

Abstract: Neural Architecture Search (NAS) methods have shown to output networks that largely outperform human-designed networks. However, conventional NAS methods have mostly tackled the single dataset scenario, incuring in a large computational cost as the procedure has to be run from scratch for every new dataset. In this work, we focus on predictor-based algorithms and propose a simple and efficient way of improving their prediction performance when dealing with data distribution shifts. We exploit the Kronecker-product on the randomly wired search-space and create a small NAS benchmark composed of networks trained over four different datasets. To improve the generalization abilities, we propose GRASP-GCN, a ranking Graph Convolutional Network that takes as additional input the shape of the layers of the neural networks. GRASP-GCN is trained with the not-at-convergence accuracies, and improves the state-of-the-art of 3.3 % for Cifar-10 and increasing moreover the generalization abilities under data distribution shift.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube