Controlling network-coupled neural dynamics with nonlinear network control theory (2405.06971v1)
Abstract: This paper addresses the problem of controlling the temporal dynamics of complex nonlinear network-coupled dynamical systems, specifically in terms of neurodynamics. Based on the Lyapunov direct method, we derive a control strategy with theoretical guarantees of controllability. To verify the performance of the derived control strategy, we perform numerical experiments on two nonlinear network-coupled dynamical systems that emulate phase synchronization and neural population dynamics. The results demonstrate the feasibility and effectiveness of our control strategy.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.