Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Identifying Key Terms in Prompts for Relevance Evaluation with GPT Models (2405.06931v1)

Published 11 May 2024 in cs.IR

Abstract: Relevance evaluation of a query and a passage is essential in Information Retrieval (IR). Recently, numerous studies have been conducted on tasks related to relevance judgment using LLMs such as GPT-4, demonstrating significant improvements. However, the efficacy of LLMs is considerably influenced by the design of the prompt. The purpose of this paper is to identify which specific terms in prompts positively or negatively impact relevance evaluation with LLMs. We employed two types of prompts: those used in previous research and generated automatically by LLMs. By comparing the performance of these prompts in both few-shot and zero-shot settings, we analyze the influence of specific terms in the prompts. We have observed two main findings from our study. First, we discovered that prompts using the term answerlead to more effective relevance evaluations than those using relevant. This indicates that a more direct approach, focusing on answering the query, tends to enhance performance. Second, we noted the importance of appropriately balancing the scope of relevance. While the term relevant can extend the scope too broadly, resulting in less precise evaluations, an optimal balance in defining relevance is crucial for accurate assessments. The inclusion of few-shot examples helps in more precisely defining this balance. By providing clearer contexts for the term relevance, few-shot examples contribute to refine relevance criteria. In conclusion, our study highlights the significance of carefully selecting terms in prompts for relevance evaluation with LLMs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)