Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms (2405.06899v3)

Published 11 May 2024 in cs.DS

Abstract: DBSCAN is a popular density-based clustering algorithm that has many different applications in practice. However, the running time of DBSCAN in high-dimensional space or general metric space ({\em e.g.,} clustering a set of texts by using edit distance) can be as large as quadratic in the input size. Moreover, most of existing accelerating techniques for DBSCAN are only available for low-dimensional Euclidean space. In this paper, we study the DBSCAN problem under the assumption that the inliers (the core points and border points) have a low intrinsic dimension (which is a realistic assumption for many high-dimensional applications), where the outliers can locate anywhere in the space without any assumption. First, we propose a $k$-center clustering based algorithm that can reduce the time-consuming labeling and merging tasks of DBSCAN to be linear. Further, we propose a linear time approximate DBSCAN algorithm, where the key idea is building a novel small-size summary for the core points. Also, our algorithm can be efficiently implemented for streaming data and the required memory is independent of the input size. Finally, we conduct our experiments and compare our algorithms with several popular DBSCAN algorithms. The experimental results suggest that our proposed approach can significantly reduce the computational complexity in practice.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com