Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes (2405.06687v3)

Published 6 May 2024 in cs.CL

Abstract: With the impressive performance in various downstream tasks, LLMs have been widely integrated into production pipelines, like recruitment and recommendation systems. A known issue of models trained on natural language data is the presence of human biases, which can impact the fairness of the system. This paper investigates LLMs' behavior with respect to gender stereotypes, in the context of occupation decision making. Our framework is designed to investigate and quantify the presence of gender stereotypes in LLMs' behavior via multi-round question answering. Inspired by prior works, we construct a dataset by leveraging a standard occupation classification knowledge base released by authoritative agencies. We tested three LLMs (RoBERTa-large, GPT-3.5-turbo, and Llama2-70b-chat) and found that all models exhibit gender stereotypes analogous to human biases, but with different preferences. The distinct preferences of GPT-3.5-turbo and Llama2-70b-chat may imply the current alignment methods are insufficient for debiasing and could introduce new biases contradicting the traditional gender stereotypes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.