Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Overview of the EHRSQL 2024 Shared Task on Reliable Text-to-SQL Modeling on Electronic Health Records (2405.06673v2)

Published 4 May 2024 in cs.CL and cs.AI

Abstract: Electronic Health Records (EHRs) are relational databases that store the entire medical histories of patients within hospitals. They record numerous aspects of patients' medical care, from hospital admission and diagnosis to treatment and discharge. While EHRs are vital sources of clinical data, exploring them beyond a predefined set of queries requires skills in query languages like SQL. To make information retrieval more accessible, one strategy is to build a question-answering system, possibly leveraging text-to-SQL models that can automatically translate natural language questions into corresponding SQL queries and use these queries to retrieve the answers. The EHRSQL 2024 shared task aims to advance and promote research in developing a question-answering system for EHRs using text-to-SQL modeling, capable of reliably providing requested answers to various healthcare professionals to improve their clinical work processes and satisfy their needs. Among more than 100 participants who applied to the shared task, eight teams were formed and completed the entire shared task requirement and demonstrated a wide range of methods to effectively solve this task. In this paper, we describe the task of reliable text-to-SQL modeling, the dataset, and the methods and results of the participants. We hope this shared task will spur further research and insights into developing reliable question-answering systems for EHRs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: