Papers
Topics
Authors
Recent
2000 character limit reached

Real-Time Pill Identification for the Visually Impaired Using Deep Learning (2405.05983v1)

Published 8 May 2024 in cs.CV, cs.AI, and cs.LG

Abstract: The prevalence of mobile technology offers unique opportunities for addressing healthcare challenges, especially for individuals with visual impairments. This paper explores the development and implementation of a deep learning-based mobile application designed to assist blind and visually impaired individuals in real-time pill identification. Utilizing the YOLO framework, the application aims to accurately recognize and differentiate between various pill types through real-time image processing on mobile devices. The system incorporates Text-to- Speech (TTS) to provide immediate auditory feedback, enhancing usability and independence for visually impaired users. Our study evaluates the application's effectiveness in terms of detection accuracy and user experience, highlighting its potential to improve medication management and safety among the visually impaired community. Keywords-Deep Learning; YOLO Framework; Mobile Application; Visual Impairment; Pill Identification; Healthcare

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: