Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Federated Combinatorial Multi-Agent Multi-Armed Bandits (2405.05950v1)

Published 9 May 2024 in cs.LG, cs.AI, cs.DM, cs.MA, and stat.ML

Abstract: This paper introduces a federated learning framework tailored for online combinatorial optimization with bandit feedback. In this setting, agents select subsets of arms, observe noisy rewards for these subsets without accessing individual arm information, and can cooperate and share information at specific intervals. Our framework transforms any offline resilient single-agent $(\alpha-\epsilon)$-approximation algorithm, having a complexity of $\tilde{\mathcal{O}}(\frac{\psi}{\epsilon\beta})$, where the logarithm is omitted, for some function $\psi$ and constant $\beta$, into an online multi-agent algorithm with $m$ communicating agents and an $\alpha$-regret of no more than $\tilde{\mathcal{O}}(m{-\frac{1}{3+\beta}} \psi\frac{1}{3+\beta} T\frac{2+\beta}{3+\beta})$. This approach not only eliminates the $\epsilon$ approximation error but also ensures sublinear growth with respect to the time horizon $T$ and demonstrates a linear speedup with an increasing number of communicating agents. Additionally, the algorithm is notably communication-efficient, requiring only a sublinear number of communication rounds, quantified as $\tilde{\mathcal{O}}\left(\psi T\frac{\beta}{\beta+1}\right)$. Furthermore, the framework has been successfully applied to online stochastic submodular maximization using various offline algorithms, yielding the first results for both single-agent and multi-agent settings and recovering specialized single-agent theoretical guarantees. We empirically validate our approach to a stochastic data summarization problem, illustrating the effectiveness of the proposed framework, even in single-agent scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: