Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAD-ICP: It Is All About Matching Data -- Robust and Informed LiDAR Odometry (2405.05828v1)

Published 9 May 2024 in cs.RO and cs.CV

Abstract: LiDAR odometry is the task of estimating the ego-motion of the sensor from sequential laser scans. This problem has been addressed by the community for more than two decades, and many effective solutions are available nowadays. Most of these systems implicitly rely on assumptions about the operating environment, the sensor used, and motion pattern. When these assumptions are violated, several well-known systems tend to perform poorly. This paper presents a LiDAR odometry system that can overcome these limitations and operate well under different operating conditions while achieving performance comparable with domain-specific methods. Our algorithm follows the well-known ICP paradigm that leverages a PCA-based kd-tree implementation that is used to extract structural information about the clouds being registered and to compute the minimization metric for the alignment. The drift is bound by managing the local map based on the estimated uncertainty of the tracked pose. To benefit the community, we release an open-source C++ anytime real-time implementation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Maćkiewicz and W. Ratajczak, “Principal components analysis (pca),” Computers & Geosciences, vol. 19, no. 3, pp. 303–342, 1993. [Online]. Available: https://www.sciencedirect.com/science/article/pii/009830049390090R
  2. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).   IEEE, 2012, pp. 3354–3361.
  3. T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018, pp. 4758–4765.
  4. Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “Mulls: Versatile lidar slam via multi-metric linear least square,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA).   IEEE, 2021, pp. 11 633–11 640.
  5. I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “Kiss-icp: In defense of point-to-point icp–simple, accurate, and robust registration if done the right way,” IEEE Robotics and Automation Letters (RA-L), vol. 8, no. 2, pp. 1029–1036, 2023.
  6. K. Chen, B. T. Lopez, A. Agha-mohammadi, and A. Mehta, “Direct lidar odometry: Fast localization with dense point clouds,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 2, pp. 2000–2007, 2022.
  7. J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser range data in urban environments.” in Proc. of Robotics: Science and Systems (RSS), 2018.
  8. L. D. Giammarino, L. Brizi, T. Guadagnino, C. Stachniss, and G. Grisetti, “Md-slam: Multi-cue direct slam,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 047–11 054.
  9. P. Besl and N. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611.   Spie, 1992, pp. 586–606.
  10. Y. Chen and G. Medioni, “Object modelling by registration of multiple range images,” Image and Vision Computing, vol. 10, no. 3, pp. 145–155, 1992.
  11. F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp variants on real-world data sets: Open-source library and experimental protocol,” Autonomous robots, vol. 34, pp. 133–148, 2013.
  12. J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in Proc. of Robotics: Science and Systems (RSS), 2014.
  13. P. Dellenbach, J. Deschaud, B. Jacquet, and F. Goulette, “Ct-icp: Real-time elastic lidar odometry with loop closure,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA).   IEEE, 2022, pp. 5580–5586.
  14. M. Karimi, M. Oelsch, O. Stengel, E. Babaians, and E. Steinbach, “Lola-slam: Low-latency lidar slam using continuous scan slicing,” IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 2248–2255, 2021.
  15. J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACM Transactions on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977.
  16. J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, “Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration,” Journal of Software Engineering for Robotics, vol. 3, no. 1, pp. 2–12, 2012.
  17. J. McNames, “A fast nearest-neighbor algorithm based on a principal axis search tree,” IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 23, no. 9, pp. 964–976, 2001.
  18. M. Muja and D. Lowe, “Flann-fast library for approximate nearest neighbors user manual,” Computer Science Department, University of British Columbia, Vancouver, BC, Canada, vol. 5, p. 6, 2009.
  19. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.
  20. C. Okasaki, “Red-black trees in a functional setting,” Journal of functional programming, vol. 9, no. 4, pp. 471–477, 1999.
  21. A. Censi, “An accurate closed-form estimate of icp’s covariance,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA).   IEEE, 2007, pp. 3167–3172.
  22. J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. Castellanos, “A survey on active simultaneous localization and mapping: State of the art and new frontiers,” IEEE Trans. on Robotics (TRO), 2023.
  23. A. Wald, “On the efficient design of statistical investigations,” The Annals of Mathematical Statistics, vol. 14, no. 2, pp. 134–140, 1943.
  24. J. Kuo, M. Muglikar, Z. Zhang, and D. Scaramuzza, “Redesigning slam for arbitrary multi-camera systems,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA).   IEEE, 2020, pp. 2116–2122.
  25. O. Salem, E. Giacomini, L. Brizi, L. D. Giammarino, and G. Grisetti, “Enhancing lidar performance: Robust de-skewing exclusively relying on range measurements,” in Intl. Conf. of the Italian Association for Artificial Intelligence (AIxIA), vol. 14318.   Springer Nature, 2023, p. 310.
  26. S. Anderson and T. D. Barfoot, “Ransac for motion-distorted 3d visual sensors,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).   IEEE, 2013, pp. 2093–2099.
  27. L. Brizi, E. Giacomini, L. D. Giammarino, S. Ferrari, O. Salem, L. D. Rebotti, and G. Grisetti, “Vbr: A vision benchmark in rome,” arXiv preprint arXiv:2404.11322, 2024.
  28. G. Kim, Y. S. Park, , Y. Cho, J. Jeong, and A. Kim, “Mulran: Multimodal range dataset for urban place recognition,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA).   IEEE, 2020, pp. 6246–6253.
  29. M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and M. Fallon, “The newer college dataset: Handheld lidar, inertial and vision with ground truth,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020, pp. 4353–4360.
  30. M. Helmberger, K. Morin, B. Berner, N. Kumar, G. Cioffi, and D. Scaramuzza, “The hilti slam challenge dataset,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 3, pp. 7518–7525, 2022.
  31. H. Wang, C. Wang, C. Chen, and L. Xie, “F-loam : Fast lidar odometry and mapping,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2021, pp. 4390–4396.
  32. T. Schops, T. Sattler, and M. Pollefeys, “Bad slam: Bundle adjusted direct rgbd-d slam,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 134–144.
Citations (6)

Summary

We haven't generated a summary for this paper yet.