Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems (2405.05818v2)

Published 9 May 2024 in cs.DS, cs.LG, cs.NA, math.NA, and math.OC

Abstract: Despite being a key bottleneck in many machine learning tasks, the cost of solving large linear systems has proven challenging to quantify due to problem-dependent quantities such as condition numbers. To tackle this, we consider a fine-grained notion of complexity for solving linear systems, which is motivated by applications where the data exhibits low-dimensional structure, including spiked covariance models and kernel machines, and when the linear system is explicitly regularized, such as ridge regression. Concretely, let $\kappa_\ell$ be the ratio between the $\ell$th largest and the smallest singular value of $n\times n$ matrix $A$. We give a stochastic algorithm based on the Sketch-and-Project paradigm, that solves the linear system $Ax = b$, that is, finds $\bar{x}$ such that $|A\bar{x} - b| \le \epsilon |b|$, in time $\bar O(\kappa_\ell\cdot n2\log 1/\epsilon)$, for any $\ell = O(n{0.729})$. This is a direct improvement over preconditioned conjugate gradient, and it provides a stronger separation between stochastic linear solvers and algorithms accessing $A$ only through matrix-vector products. Our main technical contribution is the new analysis of the first and second moments of the random projection matrix that arises in Sketch-and-Project.

Citations (2)

Summary

We haven't generated a summary for this paper yet.