Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems (2405.05818v2)

Published 9 May 2024 in cs.DS, cs.LG, cs.NA, math.NA, and math.OC

Abstract: Despite being a key bottleneck in many machine learning tasks, the cost of solving large linear systems has proven challenging to quantify due to problem-dependent quantities such as condition numbers. To tackle this, we consider a fine-grained notion of complexity for solving linear systems, which is motivated by applications where the data exhibits low-dimensional structure, including spiked covariance models and kernel machines, and when the linear system is explicitly regularized, such as ridge regression. Concretely, let $\kappa_\ell$ be the ratio between the $\ell$th largest and the smallest singular value of $n\times n$ matrix $A$. We give a stochastic algorithm based on the Sketch-and-Project paradigm, that solves the linear system $Ax = b$, that is, finds $\bar{x}$ such that $|A\bar{x} - b| \le \epsilon |b|$, in time $\bar O(\kappa_\ell\cdot n2\log 1/\epsilon)$, for any $\ell = O(n{0.729})$. This is a direct improvement over preconditioned conjugate gradient, and it provides a stronger separation between stochastic linear solvers and algorithms accessing $A$ only through matrix-vector products. Our main technical contribution is the new analysis of the first and second moments of the random projection matrix that arises in Sketch-and-Project.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube