Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation (2405.05800v1)

Published 9 May 2024 in cs.GR and cs.CV

Abstract: User-friendly 3D object editing is a challenging task that has attracted significant attention recently. The limitations of direct 3D object editing without 2D prior knowledge have prompted increased attention towards utilizing 2D generative models for 3D editing. While existing methods like Instruct NeRF-to-NeRF offer a solution, they often lack user-friendliness, particularly due to semantic guided editing. In the realm of 3D representation, 3D Gaussian Splatting emerges as a promising approach for its efficiency and natural explicit property, facilitating precise editing tasks. Building upon these insights, we propose DragGaussian, a 3D object drag-editing framework based on 3D Gaussian Splatting, leveraging diffusion models for interactive image editing with open-vocabulary input. This framework enables users to perform drag-based editing on pre-trained 3D Gaussian object models, producing modified 2D images through multi-view consistent editing. Our contributions include the introduction of a new task, the development of DragGaussian for interactive point-based 3D editing, and comprehensive validation of its effectiveness through qualitative and quantitative experiments.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.