Papers
Topics
Authors
Recent
2000 character limit reached

Neural Network Learning of Black-Scholes Equation for Option Pricing (2405.05780v1)

Published 9 May 2024 in cs.LG, q-fin.PR, and q-fin.CP

Abstract: One of the most discussed problems in the financial world is stock option pricing. The Black-Scholes Equation is a Parabolic Partial Differential Equation which provides an option pricing model. The present work proposes an approach based on Neural Networks to solve the Black-Scholes Equations. Real-world data from the stock options market were used as the initial boundary to solve the Black-Scholes Equation. In particular, times series of call options prices of Brazilian companies Petrobras and Vale were employed. The results indicate that the network can learn to solve the Black-Sholes Equation for a specific real-world stock options time series. The experimental results showed that the Neural network option pricing based on the Black-Sholes Equation solution can reach an option pricing forecasting more accurate than the traditional Black-Sholes analytical solutions. The experimental results making it possible to use this methodology to make short-term call option price forecasts in options markets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.