Certifying Euclidean Sections and Finding Planted Sparse Vectors Beyond the $\sqrt{n}$ Dimension Threshold (2405.05373v1)
Abstract: We consider the task of certifying that a random $d$-dimensional subspace $X$ in $\mathbb{R}n$ is well-spread - every vector $x \in X$ satisfies $c\sqrt{n} |x|_2 \leq |x|_1 \leq \sqrt{n}|x|_2$. In a seminal work, Barak et. al. showed a polynomial-time certification algorithm when $d \leq O(\sqrt{n})$. On the other hand, when $d \gg \sqrt{n}$, the certification task is information-theoretically possible but there is evidence that it is computationally hard [MW21,Cd22], a phenomenon known as the information-computation gap. In this paper, we give subexponential-time certification algorithms in the $d \gg \sqrt{n}$ regime. Our algorithm runs in time $\exp(\widetilde{O}(n{\varepsilon}))$ when $d \leq \widetilde{O}(n{(1+\varepsilon)/2})$, establishing a smooth trade-off between runtime and the dimension. Our techniques naturally extend to the related planted problem, where the task is to recover a sparse vector planted in a random subspace. Our algorithm achieves the same runtime and dimension trade-off for this task.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.