Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Transcendence for Pisot Morphic Words over an Algebraic Base (2405.05279v2)

Published 6 May 2024 in math.NT and cs.FL

Abstract: It is known that for a uniform morphic sequence $\boldsymbol u = \langle u_n\rangle_{n=0}\infty$ and an algebraic number $\beta$ such that $|\beta|>1$, the number $[![\boldsymbol{u} ]!]\beta:=\sum{n=0}\infty \frac{u_n}{\betan}$ either lies in $\mathbb Q(\beta)$ or is transcendental. In this paper we show a similar rational-transcendental dichotomy for sequences defined by irreducible Pisot morphisms. Subject to the Pisot conjecture (an irreducible Pisot morphism has pure discrete spectrum), we generalise the latter result to arbitrary finite alphabets. In certain cases we are able to show transcendence of $[![\boldsymbol{u}]!]{\beta}$ outright. In particular, for $k\geq 2$, if $\boldsymbol u$ is the $k$-bonacci word then $[![\boldsymbol{u}]!]{\beta}$ is transcendental.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. B. Adamczewski and Y. Bugeaud. On the complexity of algebraic numbers i. expansions in integer bases. Annals of Mathematics, 165:547–565, 2005.
  2. B. Adamczewski and Y. Bugeaud. Dynamics for β𝛽\betaitalic_β-shifts and diophantine approximation. Ergodic Theory and Dynamical Systems, 27:1695 – 1711, 2007.
  3. Sur la complexité des nombres algébriques. Comptes Rendus Mathematique, 339:11–14, 2004.
  4. On the computational complexity of algebraic numbers: the hartmanis–stearns problem revisited. Transactions of the American Mathematical Society, 373(5):3085–3115, 2020.
  5. B. Adamczewski and C. Faverjon. Mahler’s method in several variables and finite automata. arXiv preprint arXiv:2012.08283, 2020.
  6. Interactions between dynamics, arithmetics and combinatorics: The good, the bad, and the ugly. Algebraic and Topological Dynamics, 385, 2005.
  7. J. Borwein and P. B. Borwein. On the complexity of familiar functions and numbers. SIAM Review, 30(4):589–601, 1988.
  8. On the diophantine nature of the elements of cantor sets arising in the dynamics of contracted rotations. Annali Scuola Normale Superiore di Pisa - Classe Di Scienze, XXII:1681–1704, 2021.
  9. A. Cobham. Uniform tag seqences. Math. Syst. Theory, 6(3):164–192, 1972.
  10. L. V. Danilov. Some classes of transcendental numbers. Mathematical notes of the Academy of Sciences of the USSR, 12(2):524–527, 1972.
  11. S. Ferenczi and C. Mauduit. Transcendence of numbers with a low complexity expansion. Journal of Number Theory, 67(2):146–161, 1997.
  12. An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1978.
  13. P. Kebis. Transcendence of numbers related to Episturmian words. PhD thesis, University of Oxford, 2023.
  14. M. Laurent and A. Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 12:175–191, 2018.
  15. Hendrik W Lenstra Jr. Finding small degree factors of lacunary polynomials. Number theory in progress, 1:267–276, 1999.
  16. A. N. Livshits. On the spectra of adic transformations of markov compacta. Russian Mathematical Surveys, 42(3):222, 1987.
  17. J. H. Loxton and A. J. Van der Poorten. Arithmetic properties of certain functions in several variables iii. Bulletin of the Australian Mathematical Society, 16(1):15–47, 1977.
  18. On the transcendence of a series related to sturmian words, 2022. To appear in Annali della Scuola Normale Superiore di Pisa. arXiv:2204.08268.
  19. K. Mahler. Some suggestions for further research. Bulletin of the Australian Mathematical Society, 29:101 – 108, 1984.
  20. M. Morse and G. A. Hedlund. Symbolic dynamics: Sturmian trajectories. American Journal of Mathematics, 60:815–866, 1938.
  21. M. Morse and G. A. Hedlund. Symbolic dynamics ii: Sturmian trajectories. American Journal of Mathematics, 62:1–42, 1940.
  22. M. Queffélec. Substitution dynamical systems-spectral analysis, volume 1294. Springer, 2010.
  23. G. Rauzy. Nombres algébriques et substitutions. Bulletin de la Société Mathématique de France, 110:147–178, 1982.
  24. R. Risley and L. Zamboni. A generalization of sturmian sequences: Combinatorial structure and transcendence. Acta Arithmetica, 95, 01 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube