Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Analysis of Two-Stage Rollout Designs with Clustering for Causal Inference under Network Interference (2405.05119v3)

Published 8 May 2024 in stat.ME and cs.SI

Abstract: Estimating causal effects under interference is pertinent to many real-world settings. Recent work with low-order potential outcomes models uses a rollout design to obtain unbiased estimators that require no interference network information. However, the required extrapolation can lead to prohibitively high variance. To address this, we propose a two-stage experiment that selects a sub-population in the first stage and restricts treatment rollout to this sub-population in the second stage. We explore the role of clustering in the first stage by analyzing the bias and variance of a polynomial interpolation-style estimator under this experimental design. Bias increases with the number of edges cut in the clustering of the interference network, but variance depends on qualities of the clustering that relate to homophily and covariate balance. There is a tension between clustering objectives that minimize the number of cut edges versus those that maximize covariate balance across clusters. Through simulations, we explore a bias-variance trade-off and compare the performance of the estimator under different clustering strategies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com