Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

G-Loc: Tightly-coupled Graph Localization with Prior Topo-metric Information (2405.05059v2)

Published 8 May 2024 in cs.RO

Abstract: Localization in already mapped environments is a critical component in many robotics and automotive applications, where previously acquired information can be exploited along with sensor fusion to provide robust and accurate localization estimates. In this work, we offer a new perspective on map-based localization by reusing prior topological and metric information. Thus, we reformulate this long-studied problem to go beyond the mere use of metric maps. Our framework seamlessly integrates LiDAR, inertial and GNSS measurements, and cloud-to-map registrations in a sliding window graph fashion, which allows to accommodate the uncertainty of each observation. The modularity of our framework allows it to work with different sensor configurations (e.g., LiDAR resolutions, GNSS denial) and environmental conditions (e.g., mapless regions, large environments). We have conducted several validation experiments, including the deployment in a real-world automotive application, demonstrating the accuracy, efficiency, and versatility of our system in online localization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.
  2. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap slam,” IEEE Trans. on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.
  3. N. Hughes, Y. Chang, S. Hu, R. Talak, R. Abdulhai, J. Strader, and L. Carlone, “Foundations of spatial perception for robotics: Hierarchical representations and real-time systems,” The Int. J. of Robotics Research, 2024.
  4. G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization and mapping: A survey of current trends in autonomous driving,” IEEE Trans. on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, 2017.
  5. J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. A. Castellanos, “A survey on active simultaneous localization and mapping: State of the art and new frontiers,” IEEE Trans. on Robotics, vol. 39, no. 3, pp. 1686–1705, 2023.
  6. J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localization in urban environments.” in Robotics: Science and systems, vol. 4.   Atlanta, GA, USA, 2007, p. 1.
  7. K. Yoneda, H. Tehrani, T. Ogawa, N. Hukuyama, and S. Mita, “Lidar scan feature for localization with highly precise 3D map,” in Intelligent Vehicles Symp.   IEEE, 2014, pp. 1345–1350.
  8. S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68, 2015.
  9. B. Nagy and C. Benedek, “Real-time point cloud alignment for vehicle localization in a high resolution 3D map,” in European Conf. on Computer Vision Workshops, 2018.
  10. J. Levinson and S. Thrun, “Robust vehicle localization in urban environments using probabilistic maps,” in Inf. Conf. on Robotics and Automation.   IEEE, 2010, pp. 4372–4378.
  11. R. W. Wolcott and R. M. Eustice, “Robust LIDAR localization using multiresolution gaussian mixture maps for autonomous driving,” The Int. J. of Robotics Research, vol. 36, no. 3, pp. 292–319, 2017.
  12. G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song, “Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes,” in Int. Conf. on Robotics and Automation.   IEEE, 2018, pp. 4670–4677.
  13. F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise localization in high-definition road maps for urban regions,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2018, pp. 2167–2174.
  14. E. Javanmardi, Y. Gu, M. Javanmardi, and S. Kamijo, “Autonomous vehicle self-localization based on abstract map and multi-channel lidar in urban area,” IATSS Research, vol. 43, no. 1, pp. 1–13, 2019.
  15. T. Seco, M. T. Lázaro, J. Espelosín, L. Montano, and J. L. Villarroel, “Robot localization in tunnels: Combining discrete features in a pose graph framework,” Sensors, vol. 22, no. 4, 2022.
  16. P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611.   Spie, 1992, pp. 586–606.
  17. L. Wang, Y. Zhang, and J. Wang, “Map-based localization method for autonomous vehicles using 3D-LIDAR,” IFAC PapersOnLine, vol. 50, no. 1, pp. 276–281, 2017.
  18. R. P. D. Vivacqua, M. Bertozzi, P. Cerri, F. N. Martins, and R. F. Vassallo, “Self-localization based on visual lane marking maps: An accurate low-cost approach for autonomous driving,” Trans. on Intelligent Transportation Systems, vol. 19, no. 2, pp. 582–597, 2017.
  19. W.-C. Ma, I. Tartavull, I. A. Bârsan, S. Wang, M. Bai, G. Mattyus, N. Homayounfar, S. K. Lakshmikanth, A. Pokrovsky, and R. Urtasun, “Exploiting sparse semantic HD maps for self-driving vehicle localization,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2019, pp. 5304–5311.
  20. J. Jeong, Y. Cho, and A. Kim, “HDMI-LOC: Exploiting high definition map image for precise localization via bitwise particle filter,” Robotics and Automation L., vol. 5, no. 4, pp. 6310–6317, 2020.
  21. R. W. Wolcott and R. M. Eustice, “Visual localization within lidar maps for automated urban driving,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2014, pp. 176–183.
  22. P. Biber and W. Straßer, “The normal distributions transform: A new approach to laser scan matching,” in Int. Conf. on Intelligent Robots and Systems, vol. 3.   IEEE, 2003, pp. 2743–2748.
  23. P. Egger, P. V. Borges, G. Catt, A. Pfrunder, R. Siegwart, and R. Dubé, “Posemap: Lifelong, multi-environment 3D lidar localization,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2018, pp. 3430–3437.
  24. G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,” Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010.
  25. R. Dube, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and localization using data-driven descriptors,” The Int. J. of Robotics Research, vol. 39, no. 2-3, pp. 339–355, 2020.
  26. C. Guo, M. Lin, H. Guo, P. Liang, and E. Cheng, “Coarse-to-fine semantic localization with HD map for autonomous driving in structural scenes,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2021, pp. 1146–1153.
  27. K. Koide, S. Oishi, M. Yokozuka, and A. Banno, “Tightly coupled range inertial localization on a 3D prior map based on sliding window factor graph optimization,” arXiv preprint arXiv:2402.05540, 2024.
  28. S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–57, 2002.
  29. S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, 2022.
  30. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-coupled LiDAR inertial odometry via smoothing and mapping,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2020, pp. 5135–5142.
  31. K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP for fast and accurate 3D point cloud registration,” in Int. Conf. on Robotics and Automation.   IEEE, 2021, pp. 11 054–11 059.
  32. C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for real-time visual-inertial odometry,” IEEE Trans. on Robotics, vol. 33, no. 1, pp. 1–21, 2016.
  33. G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige, “g2o: A general framework for (hyper) graph optimization,” in Int. Conf. on Robotics and Automation.   IEEE, 2011, pp. 9–13.
  34. Z. Yan, L. Sun, T. Krajník, and Y. Ruichek, “EU long-term dataset with multiple sensors for autonomous driving,” in Int. Conf. on Intelligent Robots and Systems.   IEEE, 2020, pp. 10 697–10 704.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lorenzo Montano-Oliván (2 papers)
  2. Julio A. Placed (7 papers)
  3. Luis Montano (16 papers)
  4. María T. Lázaro (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.