Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An adaptive finite element multigrid solver using GPU acceleration (2405.05047v2)

Published 8 May 2024 in math.NA and cs.NA

Abstract: Adaptive finite elements combined with geometric multigrid solvers are one of the most efficient numerical methods for problems such as the instationary Navier-Stokes equations. Yet despite their efficiency, computations remain expensive and the simulation of, for example, complex flow problems can take many hours or days. GPUs provide an interesting avenue to speed up the calculations due to their very large theoretical performance. However, the large degree of parallelism and non-standard API make the use of GPUs in scientific computing challenging. In this work, we develop a GPU acceleration for the adaptive finite element library Gascoigne and study its effectiveness for different systems of partial differential equations. Our goal is thereby to integrate the GPU acceleration into the existing code with minimal changes, even when this requires a penalty in the GPU acceleration. Through the systematic formulation of all computations as linear algebra operations, we can employ GPU-accelerated linear algebra libraries, which simplifies the implementation and ensures the maintainability of the code while achieving very efficient GPU utilizations. Our results for a transport-diffusion equation, linear elasticity, and the instationary Navier-Stokes equations show substantial speedups of up to 20X compared to multi-core CPU implementations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.