Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AI-based Dynamic Schedule Calculation in Time Sensitive Networks using GCN-TD3 (2405.05019v1)

Published 8 May 2024 in cs.NI

Abstract: Offline scheduling in Time Sensitive Networking (TSN) utilizing the Time Aware Shaper (TAS) facilitates optimal deterministic latency and jitter-bounds calculation for Time- Triggered (TT) flows. However, the dynamic nature of traffic in industrial settings necessitates a strategy for adaptively scheduling flows without interrupting existing schedules. Our research identifies critical gaps in current dynamic scheduling methods for TSN and introduces the novel GCN-TD3 approach. This novel approach utilizes a Graph Convolutional Network (GCN) for representing the various relations within different components of TSN and employs the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm to dynamically schedule any incoming flow. Additionally, an Integer Linear Programming (ILP) based offline scheduler is used both to initiate the simulation and serve as a fallback mechanism. This mechanism is triggered to recalculate the entire schedule when the predefined threshold of Gate Control List(GCL) length exceeds. Comparative analyses demonstrate that GCN-TD3 outperforms existing methods like Deep Double Q-Network (DDQN) and Deep Deterministic Policy Gradient (DDPG), exhibiting convergence within 4000 epochs with a 90\% dynamic TT flow admission rate while maintaining deadlines and reducing jitter to as low as 2us. Finally, two modules were developed for the OMNeT++ simulator, facilitating dynamic simulation to evaluate the methodology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: