Papers
Topics
Authors
Recent
2000 character limit reached

Computation of some dispersive equations through their iterated linearisation (2405.04958v1)

Published 8 May 2024 in math.NA, cs.NA, and physics.comp-ph

Abstract: It is often the case that, while the numerical solution of the non-linear dispersive equation $\mathrm{i}\partial_t u(t)=\mathcal{H}(u(t),t)u(t)$ represents a formidable challenge, it is fairly easy and cheap to solve closely related linear equations of the form $\mathrm{i}\partial_t u(t)=\mathcal{H}_1(t)u(t)+\widetilde{\mathcal H}_2(t)u(t)$, where $\mathcal{H}_1(t)+\mathcal{H}_2(v,t)=\mathcal{H}(v,t)$. In that case we advocate an iterative linearisation procedure that involves fixed-point iteration of the latter equation to solve the former. A typical case is when the original problem is a nonlinear Schr\"odinger or Gross--Pitaevskii equation, while the `easy' equation is linear Schr\"odinger with time-dependent potential. We analyse in detail the iterative scheme and its practical implementation, prove that each iteration increases the order, derive upper bounds on the speed of convergence and discuss in the case of nonlinear Schr\"odinger equation with cubic potential the preservation of structural features of the underlying equation: the $\mathrm{L}_2$ norm, momentum and Hamiltonian energy. A key ingredient in our approach is the use of the Magnus expansion in conjunction with Hermite quadratures, which allows effective solutions of the linearised but non-autonomous equations in an iterative fashion. The resulting Magnus--Hermite methods can be combined with a wide range of numerical approximations to the matrix exponential. The paper concludes with a number of numerical experiments, demonstrating the power of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.