Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Computation of some dispersive equations through their iterated linearisation (2405.04958v1)

Published 8 May 2024 in math.NA, cs.NA, and physics.comp-ph

Abstract: It is often the case that, while the numerical solution of the non-linear dispersive equation $\mathrm{i}\partial_t u(t)=\mathcal{H}(u(t),t)u(t)$ represents a formidable challenge, it is fairly easy and cheap to solve closely related linear equations of the form $\mathrm{i}\partial_t u(t)=\mathcal{H}_1(t)u(t)+\widetilde{\mathcal H}_2(t)u(t)$, where $\mathcal{H}_1(t)+\mathcal{H}_2(v,t)=\mathcal{H}(v,t)$. In that case we advocate an iterative linearisation procedure that involves fixed-point iteration of the latter equation to solve the former. A typical case is when the original problem is a nonlinear Schr\"odinger or Gross--Pitaevskii equation, while the `easy' equation is linear Schr\"odinger with time-dependent potential. We analyse in detail the iterative scheme and its practical implementation, prove that each iteration increases the order, derive upper bounds on the speed of convergence and discuss in the case of nonlinear Schr\"odinger equation with cubic potential the preservation of structural features of the underlying equation: the $\mathrm{L}_2$ norm, momentum and Hamiltonian energy. A key ingredient in our approach is the use of the Magnus expansion in conjunction with Hermite quadratures, which allows effective solutions of the linearised but non-autonomous equations in an iterative fashion. The resulting Magnus--Hermite methods can be combined with a wide range of numerical approximations to the matrix exponential. The paper concludes with a number of numerical experiments, demonstrating the power of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube