Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FIGRET: Fine-Grained Robustness-Enhanced Traffic Engineering (2405.04932v3)

Published 8 May 2024 in cs.NI

Abstract: Traffic Engineering (TE) is critical for improving network performance and reliability. A key challenge in TE is the management of sudden traffic bursts. Existing TE schemes either do not handle traffic bursts or uniformly guard against traffic bursts, thereby facing difficulties in achieving a balance between normal-case performance and burst-case performance. To address this issue, we introduce FIGRET, a Fine-Grained Robustness-Enhanced TE scheme. FIGRET offers a novel approach to TE by providing varying levels of robustness enhancements, customized according to the distinct traffic characteristics of various source-destination pairs. By leveraging a burst-aware loss function and deep learning techniques, FIGRET is capable of generating high-quality TE solutions efficiently. Our evaluations of real-world production networks, including Wide Area Networks and data centers, demonstrate that FIGRET significantly outperforms existing TE schemes. Compared to the TE scheme currently deployed in Jupiter data center networks of Google, FIGRET achieves a 9\%-34\% reduction in average Maximum Link Utilization and improves solution speed by $35\times$-$1800 \times$. Against DOTE, a state-of-the-art deep learning-based TE method, FIGRET substantially lowers the occurrence of significant congestion events triggered by traffic bursts by 41\%-53.9\% in topologies with high traffic dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: