Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GoalGrasp: Grasping Goals in Partially Occluded Scenarios without Grasp Training (2405.04783v2)

Published 8 May 2024 in cs.RO

Abstract: Grasping user-specified objects is crucial for robotic assistants; however, most current 6-DoF grasp detection methods are object-agnostic, making it challenging to grasp specific targets from a scene. To achieve that, we present GoalGrasp, a simple yet effective 6-DoF robot grasp pose detection method that does not rely on grasp pose annotations and grasp training. By combining 3D bounding boxes and simple human grasp priors, our method introduces a novel paradigm for robot grasp pose detection. GoalGrasp's novelty is its swift grasping of user-specified objects and partial mitigation of occlusion issues. The experimental evaluation involves 18 common objects categorized into 7 classes. Our method generates dense grasp poses for 1000 scenes. We compare our method's grasp poses to existing approaches using a novel stability metric, demonstrating significantly higher grasp pose stability. In user-specified robot grasping tests, our method achieves a 94% success rate, and 92% under partial occlusion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. K. Xu, S. Zhao, Z. Zhou, Z. Li, H. Pi, Y. Zhu, Y. Wang, and R. Xiong, “A joint modeling of vision-language-action for target-oriented grasping in clutter,” arXiv preprint arXiv:2302.12610, 2023.
  2. M. Tröbinger, C. Jähne, Z. Qu, J. Elsner, A. Reindl, S. Getz, T. Goll, B. Loinger, T. Loibl, C. Kugler et al., “Introducing garmi-a service robotics platform to support the elderly at home: Design philosophy, system overview and first results,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5857–5864, 2021.
  3. H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial and temporal domains,” IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3929–3945, 2023.
  4. X. Chen, J. Yang, Z. He, H. Yang, Q. Zhao, and Y. Shi, “Qwengrasp: A usage of large vision language model for target-oriented grasping,” arXiv preprint arXiv:2309.16426, 2023.
  5. X. Liu, X. Yuan, Q. Zhu, Y. Wang, M. Feng, J. Zhou, and Z. Zhou, “A depth adaptive feature extraction and dense prediction network for 6-d pose estimation in robotic grasping,” IEEE Transactions on Industrial Informatics, 2023.
  6. A. Cordeiro, L. F. Rocha, C. Costa, P. Costa, and M. F. Silva, “Bin picking approaches based on deep learning techniques: A state-of-the-art survey,” in 2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).   IEEE, 2022, pp. 110–117.
  7. K. Chen, R. Cao, S. James, Y. Li, Y.-H. Liu, P. Abbeel, and Q. Dou, “Sim-to-real 6d object pose estimation via iterative self-training for robotic bin picking,” in European Conference on Computer Vision.   Springer, 2022, pp. 533–550.
  8. X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox, “Self-supervised 6d object pose estimation for robot manipulation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 3665–3671.
  9. A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof grasping for target-driven object manipulation in clutter,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 6232–6238.
  10. Z. Liu, Z. Wang, S. Huang, J. Zhou, and J. Lu, “Ge-grasp: Efficient target-oriented grasping in dense clutter,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1388–1395.
  11. C. Xie, Y. Xiang, A. Mousavian, and D. Fox, “The best of both modes: Separately leveraging rgb and depth for unseen object instance segmentation,” in Conference on robot learning.   PMLR, 2020, pp. 1369–1378.
  12. H. Yu, X. Lou, Y. Yang, and C. Choi, “Iosg: Image-driven object searching and grasping,” arXiv preprint arXiv:2308.05821, 2023.
  13. S. Gui and Y. Luximon, “Recursive cross-view: Use only 2d detectors to achieve 3d object detection without 3d annotations,” IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6659–6666, 2023.
  14. S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection,” The International journal of robotics research, vol. 37, no. 4-5, pp. 421–436, 2018.
  15. M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 438–13 444.
  16. B. Zhao, H. Zhang, X. Lan, H. Wang, Z. Tian, and N. Zheng, “Regnet: Region-based grasp network for end-to-end grasp detection in point clouds,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 474–13 480.
  17. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.
  18. A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational grasp generation for object manipulation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2901–2910.
  19. H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-scale benchmark for general object grasping,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 444–11 453.
  20. M. Sun and Y. Gao, “Gater: Learning grasp-action-target embeddings and relations for task-specific grasping,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 618–625, 2021.
  21. T. Li, J. An, K. Yang, G. Chen, and Y. Wang, “An efficient network for target-oriented robot grasping pose generation in clutter,” in 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA).   IEEE, 2022, pp. 967–972.
  22. G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1677–1734, 2021.
  23. H. Cao, L. Dirnberger, D. Bernardini, C. Piazza, and M. Caccamo, “6impose: bridging the reality gap in 6d pose estimation for robotic grasping,” Frontiers in Robotics and AI, vol. 10, p. 1176492, 2023.
  24. H. Zhang, Z. Liang, C. Li, H. Zhong, L. Liu, C. Zhao, Y. Wang, and Q. J. Wu, “A practical robotic grasping method by using 6-d pose estimation with protective correction,” IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 3876–3886, 2021.
  25. J. Jiang, Z. He, X. Zhao, S. Zhang, C. Wu, and Y. Wang, “Reg-net: Improving 6dof object pose estimation with 2d keypoint long-short-range-aware registration,” IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 328–338, 2022.
  26. Y. Hu, P. Fua, W. Wang, and M. Salzmann, “Single-stage 6d object pose estimation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2930–2939.
  27. I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com