Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 68 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 187 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Nearly-Optimal Consensus Tolerating Adaptive Omissions: Why is a Lot of Randomness Needed? (2405.04762v2)

Published 8 May 2024 in cs.DC, cs.CR, and cs.DS

Abstract: We study the problem of reaching agreement in a synchronous distributed system by $n$ autonomous parties, when the communication links from/to faulty parties can omit messages. The faulty parties are selected and controlled by an adaptive, full-information, computationally unbounded adversary. We design a randomized algorithm that works in $O(\sqrt{n}\log2 n)$ rounds and sends $O(n2\log3 n)$ communication bits, where the number of faulty parties is $\Theta(n)$. Our result is simultaneously tight for both these measures within polylogarithmic factors: due to the $\Omega(n2)$ lower bound on communication by Abraham et al. (PODC'19) and $\Omega(\sqrt{n/\log n})$ lower bound on the number of rounds by Bar-Joseph and Ben-Or (PODC'98). We also quantify how much randomness is necessary and sufficient to reduce time complexity to a certain value, while keeping the communication complexity (nearly) optimal. We prove that no MC algorithm can work in less than $\Omega(\frac{n2}{\max{R,n}\log n})$ rounds if it uses less than $O(R)$ calls to a random source, assuming a constant fraction of faulty parties. This can be contrasted with a long line of work on consensus against an {\em adversary limited to polynomial computation time}, thus unable to break cryptographic primitives, culminating in a work by Ghinea et al. (EUROCRYPT'22), where an optimal $O(r)$-round solution with probability $1-(cr){-r}$ is given. Our lower bound strictly separates these two regimes, by excluding such results if the adversary is computationally unbounded. On the upper bound side, we show that for $R\in\tilde{O}(n{3/2})$ there exists an algorithm solving consensus in $\tilde{O}(\frac{n2}{R})$ rounds with high probability, where tilde notation hides a polylogarithmic factor. The communication complexity of the algorithm does not depend on the amount of randomness $R$ and stays optimal within polylogarithmic factor.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 23 likes.

Upgrade to Pro to view all of the tweets about this paper: