Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nearly-Optimal Consensus Tolerating Adaptive Omissions: Why is a Lot of Randomness Needed? (2405.04762v2)

Published 8 May 2024 in cs.DC, cs.CR, and cs.DS

Abstract: We study the problem of reaching agreement in a synchronous distributed system by $n$ autonomous parties, when the communication links from/to faulty parties can omit messages. The faulty parties are selected and controlled by an adaptive, full-information, computationally unbounded adversary. We design a randomized algorithm that works in $O(\sqrt{n}\log2 n)$ rounds and sends $O(n2\log3 n)$ communication bits, where the number of faulty parties is $\Theta(n)$. Our result is simultaneously tight for both these measures within polylogarithmic factors: due to the $\Omega(n2)$ lower bound on communication by Abraham et al. (PODC'19) and $\Omega(\sqrt{n/\log n})$ lower bound on the number of rounds by Bar-Joseph and Ben-Or (PODC'98). We also quantify how much randomness is necessary and sufficient to reduce time complexity to a certain value, while keeping the communication complexity (nearly) optimal. We prove that no MC algorithm can work in less than $\Omega(\frac{n2}{\max{R,n}\log n})$ rounds if it uses less than $O(R)$ calls to a random source, assuming a constant fraction of faulty parties. This can be contrasted with a long line of work on consensus against an {\em adversary limited to polynomial computation time}, thus unable to break cryptographic primitives, culminating in a work by Ghinea et al. (EUROCRYPT'22), where an optimal $O(r)$-round solution with probability $1-(cr){-r}$ is given. Our lower bound strictly separates these two regimes, by excluding such results if the adversary is computationally unbounded. On the upper bound side, we show that for $R\in\tilde{O}(n{3/2})$ there exists an algorithm solving consensus in $\tilde{O}(\frac{n2}{R})$ rounds with high probability, where tilde notation hides a polylogarithmic factor. The communication complexity of the algorithm does not depend on the amount of randomness $R$ and stays optimal within polylogarithmic factor.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 23 likes.

Upgrade to Pro to view all of the tweets about this paper: