Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution (2405.04595v1)

Published 7 May 2024 in eess.IV and cs.CV

Abstract: In recent years, convolutional neural networks (CNNs) have achieved remarkable advancement in the field of remote sensing image super-resolution due to the complexity and variability of textures and structures in remote sensing images (RSIs), which often repeat in the same images but differ across others. Current deep learning-based super-resolution models focus less on high-frequency features, which leads to suboptimal performance in capturing contours, textures, and spatial information. State-of-the-art CNN-based methods now focus on the feature extraction of RSIs using attention mechanisms. However, these methods are still incapable of effectively identifying and utilizing key content attention signals in RSIs. To solve this problem, we proposed an advanced feature extraction module called Channel and Spatial Attention Feature Extraction (CSA-FE) for effectively extracting the features by using the channel and spatial attention incorporated with the standard vision transformer (ViT). The proposed method trained over the UCMerced dataset on scales 2, 3, and 4. The experimental results show that our proposed method helps the model focus on the specific channels and spatial locations containing high-frequency information so that the model can focus on relevant features and suppress irrelevant ones, which enhances the quality of super-resolved images. Our model achieved superior performance compared to various existing models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.