Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diff-IP2D: Diffusion-Based Hand-Object Interaction Prediction on Egocentric Videos (2405.04370v4)

Published 7 May 2024 in cs.CV

Abstract: Understanding how humans would behave during hand-object interaction is vital for applications in service robot manipulation and extended reality. To achieve this, some recent works have been proposed to simultaneously forecast hand trajectories and object affordances on human egocentric videos. The joint prediction serves as a comprehensive representation of future hand-object interactions in 2D space, indicating potential human motion and motivation. However, the existing approaches mostly adopt the autoregressive paradigm for unidirectional prediction, which lacks mutual constraints within the holistic future sequence, and accumulates errors along the time axis. Meanwhile, these works basically overlook the effect of camera egomotion on first-person view predictions. To address these limitations, we propose a novel diffusion-based interaction prediction method, namely Diff-IP2D, to forecast future hand trajectories and object affordances concurrently in an iterative non-autoregressive manner. We transform the sequential 2D images into latent feature space and design a denoising diffusion model to predict future latent interaction features conditioned on past ones. Motion features are further integrated into the conditional denoising process to enable Diff-IP2D aware of the camera wearer's dynamics for more accurate interaction prediction. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art baselines on both the off-the-shelf metrics and our newly proposed evaluation protocol. This highlights the efficacy of leveraging a generative paradigm for 2D hand-object interaction prediction. The code of Diff-IP2D is released as open source at https://github.com/IRMVLab/Diff-IP2D.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: