Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-Memory Systems (2405.03967v1)

Published 7 May 2024 in cs.LG, cs.AR, and cs.AI

Abstract: Reinforcement Learning (RL) trains agents to learn optimal behavior by maximizing reward signals from experience datasets. However, RL training often faces memory limitations, leading to execution latencies and prolonged training times. To overcome this, SwiftRL explores Processing-In-Memory (PIM) architectures to accelerate RL workloads. We achieve near-linear performance scaling by implementing RL algorithms like Tabular Q-learning and SARSA on UPMEM PIM systems and optimizing for hardware. Our experiments on OpenAI GYM environments using UPMEM hardware demonstrate superior performance compared to CPU and GPU implementations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com