Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error_Detection, Correction, and Metadata Integration (2405.03870v1)

Published 6 May 2024 in cs.AI and cs.DB

Abstract: The widespread adoption of big data has ushered in a new era of data-driven decision-making, transforming numerous industries and sectors. However, the efficacy of these decisions hinges on the quality of the underlying data. Poor data quality can result in inaccurate analyses and deceptive conclusions. Managing the vast volume, velocity, and variety of data sources presents significant challenges, heightening the importance of addressing big data quality issues. While there has been increased attention from both academia and industry, current approaches often lack comprehensiveness and universality. They tend to focus on limited metrics, neglecting other dimensions of data quality. Moreover, existing methods are often context-specific, limiting their applicability across different domains. There is a clear need for intelligent, automated approaches leveraging AI for advanced data quality corrections. To bridge these gaps, this Ph.D. thesis proposes a novel set of interconnected frameworks aimed at enhancing big data quality comprehensively. Firstly, we introduce new quality metrics and a weighted scoring system for precise data quality assessment. Secondly, we present a generic framework for detecting various quality anomalies using AI models. Thirdly, we propose an innovative framework for correcting detected anomalies through predictive modeling. Additionally, we address metadata quality enhancement within big data ecosystems. These frameworks are rigorously tested on diverse datasets, demonstrating their efficacy in improving big data quality. Finally, the thesis concludes with insights and suggestions for future research directions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube