Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Orchestrated Co-scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning (2405.03831v1)

Published 6 May 2024 in cs.DC

Abstract: CPU-GPU heterogeneous architectures are now commonly used in a wide variety of computing systems from mobile devices to supercomputers. Maximizing the throughput for multi-programmed workloads on such systems is indispensable as one single program typically cannot fully exploit all available resources. At the same time, power consumption is a key issue and often requires optimizing power allocations to the CPU and GPU while enforcing a total power constraint, in particular when the power/thermal requirements are strict. The result is a system-wide optimization problem with several knobs. In particular we focus on (1) co-scheduling decisions, i.e., selecting programs to co-locate in a space sharing manner; (2) resource partitioning on both CPUs and GPUs; and (3) power capping on both CPUs and GPUs. We solve this problem using predictive performance modeling using machine learning in order to coordinately optimize the above knob setups. Our experiential results using a real system show that our approach achieves up to 67% of speedup compared to a time-sharing-based scheduling with a naive power capping that evenly distributes power budgets across components.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets