Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning-based Accelerated MR Cholangiopancreatography without Fully-sampled Data (2405.03732v3)

Published 6 May 2024 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3T and 0.55T. A total of 35 healthy volunteers underwent conventional two-fold accelerated MRCP scans at field strengths of 3T and 0.55T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively six-fold undersampled data obtained at 3T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3T to 0.55T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 seconds for MRCP at 3T/0.55T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3T/0.55T while maintaining the image quality of conventional acquisitions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube