Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Collecting Consistently High Quality Object Tracks with Minimal Human Involvement by Using Self-Supervised Learning to Detect Tracker Errors (2405.03643v1)

Published 6 May 2024 in cs.CV

Abstract: We propose a hybrid framework for consistently producing high-quality object tracks by combining an automated object tracker with little human input. The key idea is to tailor a module for each dataset to intelligently decide when an object tracker is failing and so humans should be brought in to re-localize an object for continued tracking. Our approach leverages self-supervised learning on unlabeled videos to learn a tailored representation for a target object that is then used to actively monitor its tracked region and decide when the tracker fails. Since labeled data is not needed, our approach can be applied to novel object categories. Experiments on three datasets demonstrate our method outperforms existing approaches, especially for small, fast moving, or occluded objects.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.