Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Majority consensus thresholds in competitive Lotka--Volterra populations (2405.03568v1)

Published 6 May 2024 in cs.DC

Abstract: One of the key challenges in synthetic biology is devising robust signaling primitives for engineered microbial consortia. In such systems, a fundamental signal amplification problem is the majority consensus problem: given a system with two input species with initial difference of $\Delta$ in population sizes, what is the probability that the system reaches a state in which only the initial majority species is present? In this work, we consider a discrete and stochastic version of competitive Lotka--Volterra dynamics, a standard model of microbial community dynamics. We identify new threshold properties for majority consensus under different types of interference competition: - We show that under so-called self-destructive interference competition between the two input species, majority consensus can be reached with high probability if the initial difference satisfies $\Delta \in \Omega(\log2 n)$, where $n$ is the initial population size. This gives an exponential improvement compared to the previously known bound of $\Omega(\sqrt{n \log n})$ by Cho et al. [Distributed Computing, 2021] given for a special case of the competitive Lotka--Volterra model. In contrast, we show that an initial gap of $\Delta \in \Omega(\sqrt{\log n})$ is necessary. - On the other hand, we prove that under non-self-destructive interference competition, an initial gap of $\Omega(\sqrt{n})$ is necessary to succeed with high probability and that a $\Omega(\sqrt{n \log n})$ gap is sufficient. This shows a strong qualitative gap between the performance of self-destructive and non-self-destructive interference competition. Moreover, we show that if in addition the populations exhibit interference competition between the individuals of the same species, then majority consensus cannot always be solved with high probability, no matter what the difference in the initial population counts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube