Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extensional and Non-extensional Functions as Processes (2405.03536v1)

Published 6 May 2024 in cs.LO and cs.PL

Abstract: Following Milner's seminal paper, the representation of functions as processes has received considerable attention. For pure $\lambda$-calculus, the process representations yield (at best) non-extensional $\lambda $-theories (i.e., $\beta$ rule holds, whereas $\eta$ does not). In the paper, we study how to obtain extensional representations, and how to move between extensional and non-extensional representations. Using Internal $\pi$, $\mathrm{I}\pi$ (a subset of the $\pi$-calculus in which all outputs are bound), we develop a refinement of Milner's original encoding of functions as processes that is parametric on certain abstract components called wires. These are, intuitively, processes whose task is to connect two end-point channels. We show that when a few algebraic properties of wires hold, the encoding yields a $\lambda$-theory. Exploiting the symmetries and dualities of $\mathrm{I}\pi$, we isolate three main classes of wires. The first two have a sequential behaviour and are dual of each other; the third has a parallel behaviour and is the dual of itself. We show the adoption of the parallel wires yields an extensional $\lambda$-theory; in fact, it yields an equality that coincides with that of B\"ohm trees with infinite $\eta$. In contrast, the other two classes of wires yield non-extensional $\lambda$-theories whose equalities are those of the L\'evy-Longo and B\"ohm trees.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Samson Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9, 1994. doi:10.1016/0304-3975(94)00103-0.
  2. Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland Linguistic Series. North-Holland, 1984.
  3. Sequentiality and the pi-calculus. In Samson Abramsky, editor, Typed Lambda Calculi and Applications TLCA 2001, volume 2044 of Lecture Notes in Computer Science, pages 29–45. Springer, 2001. doi:10.1007/3-540-45413-6\_7.
  4. Michele Boreale. On the expressiveness of internal mobility in name-passing calculi. Theor. Comput. Sci., 195(2):205–226, 1998. doi:10.1016/S0304-3975(97)00220-X.
  5. On the pi-calculus and linear logic. Theor. Comput. Sci., 135(1):11–65, 1994. doi:10.1016/0304-3975(94)00104-9.
  6. Games and strategies as event structures. Log. Methods Comput. Sci., 13(3), 2017. doi:10.23638/LMCS-13(3:35)2017.
  7. Linear logic propositions as session types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. doi:10.1017/S0960129514000218.
  8. Two sides of the same coin: session types and game semantics: a synchronous side and an asynchronous side. Proc. ACM Program. Lang., 3(POPL):27:1–27:29, 2019. doi:10.1145/3290340.
  9. Vincent Danos. La Logique Linéaire appliquée à l’étude de divers processus de normalisation (principalement du Lambda-calcul). PhD thesis, Université Paris 7, France, 1990.
  10. Divergence and unique solution of equations. Log. Methods Comput. Sci., 15(3), 2019. doi:10.23638/LMCS-15(3:12)2019.
  11. Eager functions as processes. Theor. Comput. Sci., 913:8–42, 2022. doi:10.1016/j.tcs.2022.01.043.
  12. E. Engeler. Algebras and combinators. Algebra Universalis, 13:389–392, 1981.
  13. Y. Fu. A proof theoretical approach to communication. In 24th ICALP, volume 1256 of Lecture Notes in Computer Science. Springer Verlag, 1997.
  14. Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. Math. Struct. Comput. Sci., 11(3):301–506, 2001. doi:10.1017/S096012950100336X.
  15. Pi-calculus, dialogue games and PCF. In John Williams, editor, Proceedings of conf. on Functional programming languages and computer architecture (FPCA), pages 96–107. ACM, 1995. doi:10.1145/224164.224189.
  16. K. Honda and N. Yoshida. On reduction-based process semantics. Theor. Comput. Sci., 152(2):437–486, 1995.
  17. Game-theoretic analysis of call-by-value computation. Theor. Comput. Sci., 221(1-2):393–456, 1999. doi:10.1016/S0304-3975(99)00039-0.
  18. Games, mobile processes, and functions. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022, volume 216 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.25.
  19. Innocent game models of untyped lambda-calculus. Theor. Comput. Sci., 272(1-2):247–292, 2002. doi:10.1016/S0304-3975(00)00353-4.
  20. Adapting innocent game models for the Böhm tree lambda-theory. Theor. Comput. Sci., 308(1-3):333–366, 2003. doi:10.1016/S0304-3975(02)00849-6.
  21. Søren B. Lassen. Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up to context. In Stephen D. Brookes, Achim Jung, Michael W. Mislove, and Andre Scedrov, editors, Mathematical Foundations of Progamming Semantics MFPS 1999, volume 20 of Electronic Notes in Theoretical Computer Science, pages 346–374. Elsevier, 1999. doi:10.1016/S1571-0661(04)80083-5.
  22. Jean-Jacques Lévy. An algebraic interpretation of the lambda beta k-calculus; and an application of a labelled lambda -calculus. Theor. Comput. Sci., 2(1):97–114, 1976. doi:10.1016/0304-3975(76)90009-8.
  23. G. Longo. Set theoretical models of lambda calculus: Theory, expansions and isomorphisms. Annales of Pure and Applied Logic, 24:153–188, 1983.
  24. M. Merro. Locality in the π𝜋\piitalic_π-calculus and applications to object-oriented languages. PhD thesis, Ecoles des Mines de Paris, 2001.
  25. Robin Milner. Functions as processes. Research Report RR-1154, INRIA, 1990. URL: https://hal.inria.fr/inria-00075405.
  26. Robin Milner. Functions as processes. Math. Struct. Comput. Sci., 2(2):119–141, 1992. doi:10.1017/S0960129500001407.
  27. Robin Milner. The polyadic π𝜋\piitalic_π-calculus: a tutorial. In FriedrichL. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and Algebra of Specification, volume 94 of NATO ASI Series, pages 203–246. Springer Berlin Heidelberg, 1993. doi:10.1007/978-3-642-58041-3_6.
  28. Asynchronous games: Innocence without alternation. In Luís Caires and Vasco Thudichum Vasconcelos, editors, CONCUR 2007 - Concurrency Theory, 18th International Conference, volume 4703 of Lecture Notes in Computer Science, pages 395–411. Springer, 2007. doi:10.1007/978-3-540-74407-8\_27.
  29. On asynchrony in name-passing calculi. Mathematical Structures in Computer Science, 14(5):715–767, 2004. A preliminary version in Proc. ICALP’98. doi:10.1017/S0960129504004323.
  30. Games characterizing Levy-Longo trees. Theor. Comput. Sci., 312(1):121–142, 2004. doi:10.1016/S0304-3975(03)00405-5.
  31. G.D. Plotkin. A set theoretical definition of application. Technical Report Tech. Rep. MIP-R-95, School of A.I., Univ. of Edinburgh, 1972.
  32. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile processes. In 13th LICS Conf. IEEE Computer Society Press, 1998.
  33. Davide Sangiorgi. An investigation into functions as processes. In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical Foundations of Programming Semantics (MFPS), volume 802 of Lecture Notes in Computer Science, pages 143–159. Springer, 1993. doi:10.1007/3-540-58027-1\_7.
  34. Davide Sangiorgi. Locality and interleaving semantics in calculi for mobile processes. Theor. Comput. Sci., 155(1):39–83, 1996. doi:10.1016/0304-3975(95)00020-8.
  35. Davide Sangiorgi. π𝜋\piitalic_π-Calculus, internal mobility, and agent-passing calculi. Theor. Comput. Sci., 167(1&2):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.
  36. Davide Sangiorgi. From λ𝜆\lambdaitalic_λ to π𝜋\piitalic_π; or, Rediscovering continuations. Mathematical Structures in Computer Science, 9(4):367–401, 1999.
  37. Davide Sangiorgi. Lazy functions and mobile processes. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages 691–720. The MIT Press, 2000.
  38. Dana S. Scott. Data types as lattices. SIAM J. Comput., 5(3):522–587, 1976. doi:10.1137/0205037.
  39. The π𝜋\piitalic_π-calculus—A Theory of Mobile Processes. Cambridge University Press, 2001.
  40. Trees from functions as processes. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:11)2018.
  41. Hayo Thielecke. Categorical structure of continuation passing style. PhD thesis, University of Edinburgh, UK, 1997.
  42. Intersection types for lambda-trees. Theor. Comput. Sci., 272(1-2):3–40, 2002. doi:10.1016/S0304-3975(00)00346-7.
  43. Christopher P. Wadsworth. The relation between computational and denotational properties for scott’s dinftyinfty{}_{\mbox{infty}}start_FLOATSUBSCRIPT infty end_FLOATSUBSCRIPT-models of the lambda-calculus. SIAM J. Comput., 5(3):488–521, 1976. doi:10.1137/0205036.
  44. Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. URL: https://doi.org/10.1017/S095679681400001X.
  45. Nobuko Yoshida. Minimality and separation results on asynchronous mobile processes - representability theorems by concurrent combinators. Theor. Comput. Sci., 274(1-2):231–276, 2002. doi:10.1016/S0304-3975(00)00310-8.
Citations (1)

Summary

We haven't generated a summary for this paper yet.