Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Annealed adaptive importance sampling method in PINNs for solving high dimensional partial differential equations (2405.03433v1)

Published 6 May 2024 in math.NA and cs.NA

Abstract: Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINN method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. doi:10.1016/j.jcp.2018.10.045.
  2. doi:10.1007/s10409-021-01148-1.
  3. doi:10.1126/science.aaw4741.
  4. doi:10.1016/j.jcp.2020.109951.
  5. doi:10.1364/oe.384875.
  6. doi:10.1007/s11071-021-07146-z.
  7. doi:10.1007/s10915-022-01939-z.
  8. doi:10.1016/j.jcp.2019.05.027.
  9. doi:10.1016/j.jcp.2022.111202.
  10. doi:10.1137/18m1229845.
  11. doi:10.1016/j.cma.2022.115523.
  12. doi:10.1016/j.jcp.2021.110768.
  13. doi:10.1137/20m1318043.
  14. doi:10.1016/j.jcp.2022.111722.
  15. arXiv:2203.07404.
  16. doi:10.1137/22m1527763.
  17. arXiv:2302.01529.
  18. doi:10.1016/j.cma.2022.115671.
  19. doi:10.1137/19m1274067.
  20. doi:10.1016/j.jcp.2022.111868.
  21. arXiv:2303.15849, doi:10.48550/ARXIV.2303.15849.
  22. doi:10.1016/j.jcp.2019.109136.
  23. doi:10.4208/cicp.oa-2020-0179.
  24. arXiv:2308.16429, doi:10.48550/ARXIV.2308.16429.
  25. arXiv:2308.08468, doi:10.48550/ARXIV.2308.08468.
  26. doi:10.3233/faia230521.
  27. doi:10.1088/0067-0049/213/1/14.
  28. doi:10.1007/s11222-008-9059-x.
  29. doi:10.1002/9780470191613.
  30. doi:10.1111/insr.12500.
  31. doi:10.1016/j.sigpro.2016.08.025.
  32. doi:10.1080/01621459.1994.10476469.
  33. arXiv:2309.07899, doi:10.48550/ARXIV.2309.07899.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.