Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annealed adaptive importance sampling method in PINNs for solving high dimensional partial differential equations (2405.03433v1)

Published 6 May 2024 in math.NA and cs.NA

Abstract: Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINN method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. doi:10.1016/j.jcp.2018.10.045.
  2. doi:10.1007/s10409-021-01148-1.
  3. doi:10.1126/science.aaw4741.
  4. doi:10.1016/j.jcp.2020.109951.
  5. doi:10.1364/oe.384875.
  6. doi:10.1007/s11071-021-07146-z.
  7. doi:10.1007/s10915-022-01939-z.
  8. doi:10.1016/j.jcp.2019.05.027.
  9. doi:10.1016/j.jcp.2022.111202.
  10. doi:10.1137/18m1229845.
  11. doi:10.1016/j.cma.2022.115523.
  12. doi:10.1016/j.jcp.2021.110768.
  13. doi:10.1137/20m1318043.
  14. doi:10.1016/j.jcp.2022.111722.
  15. arXiv:2203.07404.
  16. doi:10.1137/22m1527763.
  17. arXiv:2302.01529.
  18. doi:10.1016/j.cma.2022.115671.
  19. doi:10.1137/19m1274067.
  20. doi:10.1016/j.jcp.2022.111868.
  21. arXiv:2303.15849, doi:10.48550/ARXIV.2303.15849.
  22. doi:10.1016/j.jcp.2019.109136.
  23. doi:10.4208/cicp.oa-2020-0179.
  24. arXiv:2308.16429, doi:10.48550/ARXIV.2308.16429.
  25. arXiv:2308.08468, doi:10.48550/ARXIV.2308.08468.
  26. doi:10.3233/faia230521.
  27. doi:10.1088/0067-0049/213/1/14.
  28. doi:10.1007/s11222-008-9059-x.
  29. doi:10.1002/9780470191613.
  30. doi:10.1111/insr.12500.
  31. doi:10.1016/j.sigpro.2016.08.025.
  32. doi:10.1080/01621459.1994.10476469.
  33. arXiv:2309.07899, doi:10.48550/ARXIV.2309.07899.
Citations (1)

Summary

We haven't generated a summary for this paper yet.