Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

EdgeMiner: Distributed Process Mining at the Data Sources (2405.03426v4)

Published 6 May 2024 in cs.DB and cs.DC

Abstract: Process mining is moving beyond mining traditional event logs and nowadays includes, for example, data sourced from sensors in the Internet of Things (IoT). The volume and velocity of data generated by such sensors makes it increasingly challenging to efficiently process the data by traditional process discovery algorithms, which operate on a centralized event log. This paper presents EdgeMiner, an algorithm for distributed process mining operating directly on sensor nodes on a stream of real-time event data. In contrast to centralized algorithms, EdgeMiner tracks each event and its predecessor and successor events directly on the sensor node where the event is sensed and recorded. As EdgeMiner aggregates direct successions on the individual nodes, the raw data does not need to be stored centrally, thus improving both scalability and privacy. We analytically and experimentally show the correctness of EdgeMiner. In addition, our evaluation results show that EdgeMiner determines predecessors for each event efficiently, reducing the communication overhead by up to 96% compared to querying all nodes. Further, we show that the number of queried nodes stabilizes after relatively few events, and batching predecessor queries in groups reduces the average queried nodes per event to less than 2.5%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: