Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

PAFOT: A Position-Based Approach for Finding Optimal Tests of Autonomous Vehicles (2405.03326v1)

Published 6 May 2024 in cs.SE

Abstract: Autonomous Vehicles (AVs) are prone to revolutionise the transportation industry. However, they must be thoroughly tested to avoid safety violations. Simulation testing plays a crucial role in finding safety violations of Automated Driving Systems (ADSs). This paper proposes PAFOT, a position-based approach testing framework, which generates adversarial driving scenarios to expose safety violations of ADSs. We introduce a 9-position grid which is virtually drawn around the Ego Vehicle (EV) and modify the driving behaviours of Non-Playable Characters (NPCs) to move within this grid. PAFOT utilises a single-objective genetic algorithm to search for adversarial test scenarios. We demonstrate PAFOT on a well-known high-fidelity simulator, CARLA. The experimental results show that PAFOT can effectively generate safety-critical scenarios to crash ADSs and is able to find collisions in a short simulation time. Furthermore, it outperforms other search-based testing techniques by finding more safety-critical scenarios under the same driving conditions within less effective simulation time.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com