Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Federated Learning for Drowsiness Detection in Connected Vehicles (2405.03311v1)

Published 6 May 2024 in cs.CV and cs.LG

Abstract: Ensuring driver readiness poses challenges, yet driver monitoring systems can assist in determining the driver's state. By observing visual cues, such systems recognize various behaviors and associate them with specific conditions. For instance, yawning or eye blinking can indicate driver drowsiness. Consequently, an abundance of distributed data is generated for driver monitoring. Employing machine learning techniques, such as driver drowsiness detection, presents a potential solution. However, transmitting the data to a central machine for model training is impractical due to the large data size and privacy concerns. Conversely, training on a single vehicle would limit the available data and likely result in inferior performance. To address these issues, we propose a federated learning framework for drowsiness detection within a vehicular network, leveraging the YawDD dataset. Our approach achieves an accuracy of 99.2%, demonstrating its promise and comparability to conventional deep learning techniques. Lastly, we show how our model scales using various number of federated clients

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube