Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring Frequencies via Feature Mixing and Meta-Learning for Improving Adversarial Transferability (2405.03193v1)

Published 6 May 2024 in cs.CV

Abstract: Recent studies have shown that Deep Neural Networks (DNNs) are susceptible to adversarial attacks, with frequency-domain analysis underscoring the significance of high-frequency components in influencing model predictions. Conversely, targeting low-frequency components has been effective in enhancing attack transferability on black-box models. In this study, we introduce a frequency decomposition-based feature mixing method to exploit these frequency characteristics in both clean and adversarial samples. Our findings suggest that incorporating features of clean samples into adversarial features extracted from adversarial examples is more effective in attacking normally-trained models, while combining clean features with the adversarial features extracted from low-frequency parts decomposed from the adversarial samples yields better results in attacking defense models. However, a conflict issue arises when these two mixing approaches are employed simultaneously. To tackle the issue, we propose a cross-frequency meta-optimization approach comprising the meta-train step, meta-test step, and final update. In the meta-train step, we leverage the low-frequency components of adversarial samples to boost the transferability of attacks against defense models. Meanwhile, in the meta-test step, we utilize adversarial samples to stabilize gradients, thereby enhancing the attack's transferability against normally trained models. For the final update, we update the adversarial sample based on the gradients obtained from both meta-train and meta-test steps. Our proposed method is evaluated through extensive experiments on the ImageNet-Compatible dataset, affirming its effectiveness in improving the transferability of attacks on both normally-trained CNNs and defense models. The source code is available at https://github.com/WJJLL/MetaSSA.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube