Papers
Topics
Authors
Recent
2000 character limit reached

A Multi-Agent Rollout Approach for Highway Bottleneck Decongestion in Mixed Autonomy

Published 6 May 2024 in cs.MA | (2405.03132v2)

Abstract: The integration of autonomous vehicles (AVs) into the existing transportation infrastructure offers a promising solution to alleviate congestion and enhance mobility. This research explores a novel approach to traffic optimization by employing a multi-agent rollout approach within a mixed autonomy environment. The study concentrates on coordinating the speed of human-driven vehicles by longitudinally controlling AVs, aiming to dynamically optimize traffic flow and alleviate congestion at highway bottlenecks in real-time. We model the problem as a decentralized partially observable Markov decision process (Dec-POMDP) and propose an improved multi-agent rollout algorithm. By employing agent-by-agent policy iterations, our approach implicitly considers cooperation among multiple agents and seamlessly adapts to complex scenarios where the number of agents dynamically varies. Validated in a real-world network with varying AV penetration rates and traffic flow, the simulations demonstrate that the multi-agent rollout algorithm significantly enhances performance, reducing average travel time on bottleneck segments by 9.42% with a 10% AV penetration rate.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.