Papers
Topics
Authors
Recent
2000 character limit reached

Revealing Decision Conservativeness Through Inverse Distributionally Robust Optimization (2405.03123v1)

Published 6 May 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper introduces Inverse Distributionally Robust Optimization (I-DRO) as a method to infer the conservativeness level of a decision-maker, represented by the size of a Wasserstein metric-based ambiguity set, from the optimal decisions made using Forward Distributionally Robust Optimization (F-DRO). By leveraging the Karush-Kuhn-Tucker (KKT) conditions of the convex F-DRO model, we formulate I-DRO as a bi-linear program, which can be solved using off-the-shelf optimization solvers. Additionally, this formulation exhibits several advantageous properties. We demonstrate that I-DRO not only guarantees the existence and uniqueness of an optimal solution but also establishes the necessary and sufficient conditions for this optimal solution to accurately match the actual conservativeness level in F-DRO. Furthermore, we identify three extreme scenarios that may impact I-DRO effectiveness. Our case study applies F-DRO for power system scheduling under uncertainty and employs I-DRO to recover the conservativeness level of system operators. Numerical experiments based on an IEEE 5-bus system and a realistic NYISO 11-zone system demonstrate I-DRO performance in both normal and extreme scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.