Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SalFAU-Net: Saliency Fusion Attention U-Net for Salient Object Detection (2405.02906v1)

Published 5 May 2024 in cs.CV

Abstract: Salient object detection (SOD) remains an important task in computer vision, with applications ranging from image segmentation to autonomous driving. Fully convolutional network (FCN)-based methods have made remarkable progress in visual saliency detection over the last few decades. However, these methods have limitations in accurately detecting salient objects, particularly in challenging scenes with multiple objects, small objects, or objects with low resolutions. To address this issue, we proposed a Saliency Fusion Attention U-Net (SalFAU-Net) model, which incorporates a saliency fusion module into each decoder block of the attention U-net model to generate saliency probability maps from each decoder block. SalFAU-Net employs an attention mechanism to selectively focus on the most informative regions of an image and suppress non-salient regions. We train SalFAU-Net on the DUTS dataset using a binary cross-entropy loss function. We conducted experiments on six popular SOD evaluation datasets to evaluate the effectiveness of the proposed method. The experimental results demonstrate that our method, SalFAU-Net, achieves competitive performance compared to other methods in terms of mean absolute error (MAE), F-measure, s-measure, and e-measure.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.