Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Text-driven Motion Generation via Latent Consistency Training (2405.02791v3)

Published 5 May 2024 in cs.CV and cs.AI

Abstract: Text-driven human motion generation based on diffusion strategies establishes a reliable foundation for multimodal applications in human-computer interactions. However, existing advances face significant efficiency challenges due to the substantial computational overhead of iteratively solving for nonlinear reverse diffusion trajectories during the inference phase. To this end, we propose the motion latent consistency training framework (MLCT), which precomputes reverse diffusion trajectories from raw data in the training phase and enables few-step or single-step inference via self-consistency constraints in the inference phase. Specifically, a motion autoencoder with quantization constraints is first proposed for constructing concise and bounded solution distributions for motion diffusion processes. Subsequently, a classifier-free guidance format is constructed via an additional unconditional loss function to accomplish the precomputation of conditional diffusion trajectories in the training phase. Finally, a clustering guidance module based on the K-nearest-neighbor algorithm is developed for the chain-conduction optimization mechanism of self-consistency constraints, which provides additional references of solution distributions at a small query cost. By combining these enhancements, we achieve stable and consistency training in non-pixel modality and latent representation spaces. Benchmark experiments demonstrate that our method significantly outperforms traditional consistency distillation methods with reduced training cost and enhances the consistency model to perform comparably to state-of-the-art models with lower inference costs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets