Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Evaluating the Ability of Computationally Extracted Narrative Maps to Encode Media Framing (2405.02677v1)

Published 4 May 2024 in cs.CL and cs.IR

Abstract: Narratives serve as fundamental frameworks in our understanding of the world and play a crucial role in collaborative sensemaking, providing a versatile foundation for sensemaking. Framing is a subtle yet potent mechanism that influences public perception through specific word choices, shaping interpretations of reported news events. Despite the recognized importance of narratives and framing, a significant gap exists in the literature with regard to the explicit consideration of framing within the context of computational extraction and representation. This article explores the capabilities of a specific narrative extraction and representation approach -- narrative maps -- to capture framing information from news data. The research addresses two key questions: (1) Does the narrative extraction method capture the framing distribution of the data set? (2) Does it produce a representation with consistent framing? Our results indicate that while the algorithm captures framing distributions, achieving consistent framing across various starting and ending events poses challenges. Our results highlight the potential of narrative maps to provide users with insights into the intricate framing dynamics within news narratives. However, we note that directly leveraging framing information in the computational narrative extraction process remains an open challenge.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.