Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Conformal Prediction Score that is Robust to Label Noise (2405.02648v2)

Published 4 May 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Conformal Prediction (CP) quantifies network uncertainty by building a small prediction set with a pre-defined probability that the correct class is within this set. In this study we tackle the problem of CP calibration based on a validation set with noisy labels. We introduce a conformal score that is robust to label noise. The noise-free conformal score is estimated using the noisy labeled data and the noise level. In the test phase the noise-free score is used to form the prediction set. We applied the proposed algorithm to several standard medical imaging classification datasets. We show that our method outperforms current methods by a large margin, in terms of the average size of the prediction set, while maintaining the required coverage.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube