Papers
Topics
Authors
Recent
2000 character limit reached

Inexact Adaptive Cubic Regularization Algorithms on Riemannian Manifolds and Application (2405.02588v1)

Published 4 May 2024 in math.OC, cs.NA, and math.NA

Abstract: The adaptive cubic regularization algorithm employing the inexact gradient and Hessian is proposed on general Riemannian manifolds, together with the iteration complexity to get an approximate second-order optimality under certain assumptions on accuracies about the inexact gradient and Hessian. The algorithm extends the inexact adaptive cubic regularization algorithm under true gradient in [Math. Program., 184(1-2): 35-70, 2020] to more general cases even in Euclidean settings. As an application, the algorithm is applied to solve the joint diagonalization problem on the Stiefel manifold. Numerical experiments illustrate that the algorithm performs better than the inexact trust-region algorithm in [Advances of the neural information processing systems, 31, 2018].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.